Algebraic independence of certain infinite products involving the Fibonacci numbers

نویسندگان

چکیده

Let $\{F_{n}\}_{n\geq0}$ be the Fibonacci sequence. The aim of this paper is to give explicit formulae for infinite products $$\begin{equation*} \prod_{n=1}^{\infty}\left( 1+\frac{1}{F_{n}}\right) ,\quad\prod_{n=3}^{\infty}\left( 1-\frac{1}{F_{n}}\right) \end{equation*}$$ in terms values Jacobi theta functions. From we deduce algebraic independence over $\mathbf{Q}$ above numbers by applying Bertrand’s theorem on

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)

We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.

متن کامل

An application of Fibonacci numbers into infinite Toeplitz matrices

The main purpose of this paper is to define a new regular matrix by using Fibonacci numbers and to investigate its matrix domain in the classical sequence spaces $ell _{p},ell _{infty },c$ and $c_{0}$, where $1leq p

متن کامل

Asymptotic behaviour of some infinite products involving prime numbers

The asymptotic behaviour of some entire functions defined via infinite products is investigated as the parameter z tends to infinity in the sector | arg z| < π. These functions arise in the distributions of the number of prime factors of integers and of the number of irreducible factors of monic polynomials over a finite field. Our approach is based on the Mellin transform with a suitable conto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy. Series A, Mathematical sciences

سال: 2021

ISSN: ['0386-2194']

DOI: https://doi.org/10.3792/pjaa.97.006